
	
UNIT 5
	 TESTING

UNIT V EMERGING TECHNOLOGIES 9
XML Databases: XML-Related Technologies-XML Schema- XML Query Languages- Storing XML in Databases-XML and SQL- Native XML Databases- Web Databases- Geographic Information Systems- Biological Data Management- Cloud Based Databases: Data Storage Systems on the Cloud- Cloud Storage Architectures-Cloud Data Models- Query Languages- Introduction to Big Data-Storage-Analysis.
	
5:1
	XML Databases: XML-Related Technologies

	

5:2
	XML Schema

	

5:3
	XML Query Languages

	
5:4
	
Storing XML in Databases

	

5:5
	XML and SQL

	

5:6
	Native XML Databases

	

5:7
	Web Databases- Geographic Information Systems

	

5:8
	 Biological Data Management

	
5:9
	Cloud Based Databases: Data Storage Systems on the Cloud

	5:10
	Cloud Storage Architectures-Cloud Data Models- Query Languages

	
5:11
	Introduction to Big Data-Storage-Analysis.

[image:]
CS8071-ADT	 JCE-IT 2021-22

 ARUN PRASAD.K, ASP/IT UNIT-5

[image:]

[image:]

[bookmark: _GoBack][image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]

[image:]
image2.jpeg
e Parsed entities contain characters that formed either character data or markups.
Markups are used to encode the logical and physical structure of the document.
Both structures are subject of limitations.

e Logical structure : The document logical structure consists of declarations,
elements, comments, processing instructions and character references.

e Every well-formed document contains one or more elements that form a free
hierarchy. Consequently, there is exactly one element at the highest level of the
hierarchy that serves as a root for the tree. Every element has content and zero or
more attributes.

Physical structure :

e Every XML document is composed of storage units called entities. An entity has a
name and content. The name is used to form a reference to the entity. There are
two exceptions of entities without names - The document entity and the part of
the DTD that is not contained in the document.

e An entity an contain references to other entities. There is a special entity called
document entity or root that serves as a main storage unit. XML processors always
start document processing from that unit, which can contain the whole document.

o Entity are of three types :
1. Parsed and unparsed entities
2. General and parameter entities

3. Internal and external entities

kil Goal of XML Database
a) Solve the problem of mismatches between the XML-structure data and data model
RDB products support.

b) It provides a complete solution for storing, accessing and manipulating XML
documents.

c) Make the data integration and exchange easier.
d) Support the original goal of web.
e) Human communication thru shared knowledge.

f) The Universe of network-accessible information.

Is XML a Database ?

e An XML document is a database only in the strictest sense of the term. That is, it
is a collection of data.

image3.jpeg
¢ XML provides many of the things found in databases : storage (XML documents),
schemas (DTDs, XML schema languages), query languages (XQuery, XPath, XQL,
XML-QL, QUILT, etc.), programming interfaces (SAX, DOM, JDOM) and so on.

e On the minus side, it lacks many of the things found in real databases : efficient
storage, indexes, security, transactions and data integrity, multi-user access,
triggers, queries across multiple documents, and so on.

e Thus, while it may be possible to use an XML document as a database in
environments with small amounts of data, few users, and modest performance
requirements, this will fail in most production environments, which have many
users, strict data integrity requirements, and the need for good performance.

e A good example of the type of "database" for which an XML document is suitable
is an .ini file, that is, a file that contains application configuration information.

e It is much easier to invent a small XML language and write a SAX application for
interpreting that language than it is to write a parser for comma-delimited files.

e In addition, XML allows you to have nested entries, something that is harder to
do in comma-delimited files. However, this is hardly a database, since it is read
and written linearly, and then only when the application is started and ended.

e The only real advantage of XML is that the data is portable, and this is less of an
advantage than it seems due to the widespread availability of tools for serializing
databases as XML.

XML Related Technologies

e The XML related technologies are XHTML, XML DOM, XSL, XQuery, DTD, XSD,
XLink, XPointer, SOAP, WSDL, RDF, SVG and RSS.

m Document Type Definition (DTD)

e DTD defines the structure and the legal elements and attributes of an XML
document. Its main purpose is to define the structure of an XML document. It
contains a list of legal elements and define the structure with the help of them.

e DIDs were originally a part of SGML, and are now a part of the XML
specification. They are structured lists of entities and attributes and their
relationships to one another. DTDs are not formed in XML, they are instead
formed more like the DOCTYPE tag (the Document Type Declaration) from before

e Document Type Definition, a set of rules defining relationships within a
document; DTDs can be "internal” (within a document) or "external® (links to
another document)

image4.jpeg
e An XML document may have an optional Document Type Detfinitions (DTD),
which defines the document's grammar. Since the DTD defines the XML
document's grammar, we can use an XML parser to check that if an XML
document conforms to the grammar defined by the DTD.

e DIDs can check for :
1. Correct document tree structure
2. Correct lists of attributes
3. Whether a specific element should belong in a given XML document at all

e DTDs can also specify default values for attributes, and some value checking on
attribute values.

e DTDs do not :
1. Perform type checking on element values
2. Syntax checking on element values

3. Handle extensible documents very well, where arbitrary elements can appear at
places in the document

e The purpose of a DTD is to define the legal building blocks of an XML document.
DTD is the most common schema language in use with XML documents.

e A Document Type Definition consist of a set of rules of the following forms :
<!ELEMENT ... >
<IATTLIST ... >
<IENTITY ... >
<INOTATION ... >
e An internal subset look likes
<IDOCTYPE Myname [
<! ELEMENT Myname (# PCDATA) >
1>
e The first Myname is a name of document type declaration. Any thing inside the
[] (Square bracket) constitutes the internal subset.

e Internal DTD : This is a example of a simple XML document with an internal
DTD. The DTD rules are written as part of an XML document.

<IDOCTYPE company |

< | ELEMENT company ((person | product)*) >

< | ELEMENT person (ssn, name, office, phone?) >
< | ELEMENT ssn (# PCDATA) >
< | ELEMENT name (# PCDATA) >

< | ELEMENT office (# PCDATA) >

image5.jpeg
< | ELEMENT phone (# PCDATA) >
< | ELEMENT product (pid, name, description?) >
< | ELEMENT pid (# PCDATA) >
< | ELEMENT description (# PCDATA) >

<company>
<person> <ssn> 12345678 < /ssn>
<name> John </name>
<office> B432 </office>
<phone> 1234 </phone>
</person>
<product> ... </product>

</company>
e External DTD : This is the same XML document with an external DTD . The DTD

rules are placed in a separate file, usually with ".dtd" as its file extension, and
referred to from inside the XML document.

<IDOCTYPE company SYSTEM "company.dtd">

<company>

<person> <ssn> 12345678 < /ssn>

<name> John </name>

<office> B432 </office>

<phone> 1234 </phone>

</person>

<product> ... </product>

</company>
e A DID that would validate the document
Element we use ! 1st child of I 2nd child of | 3rd optional child-of
as root element | root element I root element root element |

NS e ,,/,;//’?:optienal‘
< |ELEMENT page (title, content, commant?) >

< | ELEMENT title (#PCDATA) >~—— | | Data, i'e. coritents

< |ELEMENT content (#PCDATA) ><— | P

< | ELEMENT comment (#PCDATA) [~ (PC = Parsed Character)

e e——

| Element definitions |

Fig. 5.2.1

e In the DTD, XML elements are declared with an element declaration. An element
declaration has the following syntax :
<IELEMENT tag name child element specification>

image6.jpeg
e The building blocks of XML documents :
1) Elements : Main building blocks. Example : "company", " person " ...
2) Tags : Are used to markup elements.

3) Attributes : Attributes provide extra information about elements. Attributes are
placed inside the starting tag of an element. Example : <img src="computer.gif"
/>. The attribute-type can have the following values.

a. CDADA = String

b. ID = Key

c IDREF = Foreign key

d. IDREFS = Foreign keys separated by space
e. (val | val | ...) = Enumeration

£ NMTOKEN = Must be a valid XML name
g NMTOKENS = Multiple valid XML names
h. ENTITY = Entity

i ENTITIES = A list of entities

s NOTATION = A name of a notation

k. xml: = The value is predefined

4) PCDATA : Parsed Character Data. Think of character data as the text found
between the starting tag and the ending tag of an XML element. <name>
John</name>. PCDATA is text that will be parsed by a parser.

5) CDATA : Character Data. CDATA is text that will NOT be parsed by a parser.

6) Entities : Entities as variables used to define common text. Entity references
are references to entities. The following entities are predefined in XML :

Entity references Character
< <
> >
& &
" "
&apos ,

e Entities are expanded when a XML document is parsed by an XML parser.

e Syntax of an internal entity definition : <!ENTITY entity_name "content">

image7.jpeg
¢ Syntax of an external entity definition : <!ENTITY entity_name SYSTEM URI>
e Regular expressions vs. DTD syntax :

RE syntax DTD syntax Meaning
le ; EMPTY No element content is allowed
‘ ;b a b Both a and b must occur, in order specified
| a Ub a|b One (and only one) of a or b must occur
: at : 1 a* ! Zero or more occurrences of a must occur
lag?! at One or more occurrences of a must occur
‘; el 4 a? Zero or one occurrence of a must occur
- #PCDATA Content is text rather than an clement

e Regular expressions are considered as deterministic in DTD. The XML data can be
parsed by a deterministic finite-state automaton that is directly derived from the
regular expression.

e Expression (a + b) * a is deterministic and the in DTD syntax, ((a|b) * ,a)) is not
deterministic.

e Problems with DTDs
1. Written in a language other than XML; so need a separate parser.

2. All definitions in a DTD are global, applying to the entire document. It cannot
have two elements with the same name but with different content in separate
contexts.

3. The text content of an element can be PCDATA only; no finer typing for
numbers or special string formats.

4. Limited typing for attribute values.

o

DTDs are not truly aware of namespaces; they recognize prefixes but not the
underlying URL

5.2.2 TV

e SAX stands for Simple API for XML.

e SAX is a common interface implemented for many different XML parsers. It is not
a W3C standard. It is an ad-hoc standard and developed by David Magginson and
is open source.

e SAXis the Simple API for XML, originally a Java-only APL

image8.jpeg
SAX parser is event-based; it works like an event handler in Java. Client
application seems to be just receiving the data inactively, from the data flow point
of view.

The parser tells the application what is in the document by notifying the
application of a stream of parsing events. Application then processes those events
to act on data.

SAX parser scans an xml stream on the fly and responds to certain parsing events
as it encounters them. This is very different than digesting an entire XML
document into memory. Much faster, requires less memory. However, need to
reparse if you need to revisit data.

SAX reads the XML document and calls one of your methods for each element or
block of text that it encounters. SAX works through callbacks : you call the parser;
it calls methods that you supply.

SAX is used because event-based interface consumes fewer resources than an
object-based one. With an event-based interface, the application can start
processing the document as the parser is reading it. Fig. 5.2.2 shows SAX parser.

Notify application
thru events |

:> I Application
'\ Program

XML
Document |

Application invokes SAX parser
Fig. 5.2.2 : SAX parser
The SAX API defines a number of callback methods, which will be called when

events occur during parsing. The SAX parser reads an XML document and
generates events as it finds elements, attributes or data in the document.

Advantage of SAX :

a. It is simple.

b. It is memory efficient.

c. It works well in stream application.
Disadvantage of SAX :

a. The data is broken into pieces and clients never have all the information as a
whole unless they create their own data structure.

image9.jpeg
Document Object Model (DOM)

e The Document Object Model (DOM) is an application programming interface for
HTML and XML documents. It defines the logical structure of documents and the
way a document is accessed and manipulated.

Properties of DOM

1. Programmers can build documents, navigate their structure and add, modify or
delete elements and content.

2. Provides a standard programming interface that can be used in a wide variety of
environments and applications.

@

It supports structural isomorphism.

e The interfaces and objects used to represent and manipulate a document. The
semantics of these interfaces and objects - including both behavior and attributes.

e The relationships and collaborations among these interfaces and objects. It is a
binary specification.
e The DOM is not a way of persisting objects to XML or HTML and does not define
"the true inner semantics” of XML or HTML.
e DOM is not a set of data structures, it is an object model that specifies interfaces.
e The DOM defines several interfaces :
1. Node : The base data type of the DOM.
2. Element : Represents element.
3. Attr : Represents an attribute of an element.
4. Text : The content of an element or attribute.

5. Document : Represents the entire XML document. A Document object is often
referred to as a DOM tree.

e DOM is an object-oriented APL. The DOM parser explicitly builds an object model,
in the form of a tree structure, to represent an XML document. Your application
can then manipulate the nodes in the tree.

e DOM is a platform and language-independent interface for processing XML
documents. The DOM API defines the mechanism for querying, traversing and
manipulating the object model built.

e Fig. 5.2.3 shows DOM parser. (See Fig. 5.2.3 on next page)

e DOM represents each node of the XML tree as an object with properties and
behavior for processing the XML. The root of the tree is a Document object. Its

rildean varmvracant tha anbivra YAMT Anritmanmt aveamt tha vinl Aanlasa s me

image10.jpeg
Application

XML DOM
> =

Output

Document Parser

Program

Application invokes DOM parser

Fig. 5.2.3 DOM parser

Advantages of DOM

1. It is good when random access to widely separated parts of a document is

required.

2. It supports both read and write operations.

Disadvantage of DOM

1. It is memory inefficient because DOM store entire document in memory.

2. DOM was written in any language, method naming conversations does not follows

standard java programming conventions.

m’ Difference between SAX and DOM

SAX

DOM

SAX reads the XML document and calls one of
your methods for each element or block of text
that it encounters.

DOM reads the entire XML document into
memory and stores it as a tree data structure.

SAX provides only sequential access to the
XML document.

SAX is fast and requires very little memory, so
it can be used for huge documents.

DOM provides “random access” into the XML
document.

DOM is slow and requires huge amounts of
memory, so it cannot be used for large XML
documents.

SAX implementations do not have methods for
changing XML document.

Some DOM implementations have methods for
changing the XML document in memory.

Top to bottom traversing.

Traverse in any direction.

SAX does not store the XML in memory.

5.2.5 PSRy

It occupies more memory.

e XSLT stands for Extensible Stylesheet Language Transformations. XSLT is used to
transform XML documents into other kinds of documents usually, but not
necessarily, XHTML.

image11.jpeg
e XSLT was developed by the document processing community.

e XSLT is a transformation language for XML documents using XML syntax and
XPath expressions for path expression querying. The goal of XSLT is to be a style
sheet language with focus on how to render the XML documents to human
readable form.

e XQuery, on the other hand, is primarily focused on database like queries where
the end result is used by an application instead of browser viewing the result to
human eye. XQuery supports querying multiple documents at the same time while
XSLT handles one document at a time.

e XSLT uses two input files :
1 The XML document containing the actual data.

2 The XSL document containing both the "framework" in which to insert the data
and XSLT commands to do so.

e An XSLT document has the .xsl extension.

Working :
e The XML text document is read in and stored as a tree of nodes.
e The <xsl:itemplate match="/"> template is used to select the entire tree.

e The rules within the template are applied to the matching nodes, thus changing
the structure of the XML tree.

o If there are other templates, they must be called explicitly from the main template.
¢ Unmatched parts of the XML tree are not changed.

e After the template is applied, the tree is written out again as a text document.

XX XLink and XPointer
e XLink is the XML Linking Language and used to create a hyperlink in an XML
document language. XLink is a W3C Recommendation.

e XLink "allows elements to be inserted into XML documents in order to create and
describe links between resources.”

e XLink defines 5 basic types of element types :

1. simple : similar to what is known from HTML's < A href=

2. extended : multiple targets,

3. locator : is used in extended links for specifying individual remote resources,
4

resource : is used in extended links for specifying individual local resources,

image12.jpeg
5. arc : is used in extended links for specifying connections between locator and
resource elements.

e XLink does not define elements. It defines attributes and how the containing
elements are to be used.

e Xlink elements can have xlink:title and xlink:role attributes to specify the meaning
the connection between the resources.

e Xlink:title : this attribute contains a small amount of plain text describing the
remote resources.

e Xlinkrole : this attribute contains a URI pointing to a longer description of the
remote resource.

e Xpointers address the individual parts of an XML document. Xpointer syntax
builds on the Xpath syntax used by XSLT. XPointers must be transparent against
mechanical changes in the target document.

e An extended link associates an arbitrary number of resources. An extended link
may be stored separately from all resources that are being associated.

e A link element with XLink type="extended" contains a set of elements with XLink
types of resource, locator, arc and title.

e An element with XLink type="arc" defines links between (or among) resources.
The links can be :

1. between a location in the document and a remote resource (an "outbound" arc)
2. between a remote resource and a location in the document (an inbound arc)
3. between remote resources (a remote arc)

e XPointer pointer file is an XML. It allows the hyperlinks to the XML document
more specific part (fragments).

e XPointer uses XPath expressions to navigate in XML documents.

e XPointer is W3C Recommendation.

Namespace

e XML namespaces provide a simple method for qualifying element and attribute
names used in XML documents by associating them with namespaces identified by
URI references.

e It is possible that an XML document is processed by different programs, where
each considers only its own tags.

image13.jpeg
* A namespace is a defined collection of element and attribute names. For example :
the model namespace and the parts namespace.

e Names that belong to the same namespace must be unique. Elements can share
the same name if they reside in different namespaces. Namespaces must be
declared before they can be used.

e When a document contains element types from independently developed markup
languages, there can be name clashes : The same name is defined in different
vocabularies with different meaning. In such cases it is not clear what program
should process this tag.

e Thus, globally unique names for element types are sometimes necessary. Therefore,
element types are uniquely identified via a URI/URL (the "namespace”), and a
local name.

e Prefix and Local Name are sequences of letters, digits, underscore "_", hyphen "-",
period ".". All names starting with "xml" are reserved for the XML-standards.

e Applying a namespace to an XML document involves two steps :
1. Declaring the namespace

2. Identifying the elements and attributes within the document that belong to that
namespace

e Namespaces can be declared in document's root element. After declaring the
namespace, identify the elements and attributes that belong to that namespace.

Applications for XML
e XML is useful for these applications :

1. Data exchange between computer systems : XML is platform and
computer-language-neutral and text-based, which greatly facilitates exchanging
of data between two computer systems. For example, two e-commerce partners
can use an agree-upon XML format to exchange purchase orders and invoices
electronically and directly fed into their computer systems.

2. Data storage : Unlike databases which are platform and language-dependent,
XML provide a platform-neutral mean for data storage.

3. Specialized publishing : XML can be used for marking up documents for
specialized ~ applications, such as e-commerce, scientific documents,
Mathematical formula, e-books, among others.

image14.jpeg
EEX] soap

e Simple Object Access Protocol (SOAP) is an XML-based protocol that defines a
framework for passing messages between systems over the Internet. SOAP is the
standard messaging protocol used by Web services.

e SOAP is a lightweight protocol that allows applications to pass messages and data
back and forth between disparate systems in a distributed environment enabling
remote method invocation.

e SOAP can be used over any transport protocol such as TCP, HTTP, and SMTP.
® SOAP provides an explicit binding today for HTTP. Fig. 5.2.4 shows SOAP.

HTTP | cp | | MsMmQ | SMTP |

! . | Vo

Intital | ; | Uttimate
- | SOAP | LSTA- | SOAP | L7 | s0AP | |
| soAP [<] | EDRI | soap |
e | DD | Node | Noce D<M | Node To) ‘
= e o = o= =
T intermediaries |

I endpoint |

| clent |

| message i

Fig. 5.2.4 SOAP

e SOAP allows for any programming model and is not tied to RPC. SOAP defines a
model for processing individual, one-way messages. It also allows for any number
of Message Exchange Patterns (MEPs).

e SOAP covers the following four main areas :

a) A message format for one-way communication describing how a message can
be packed into an XML document.

b) A description of how a SOAP message should be transported using HTTP (for
Web-based interaction) or SMTP.

c) A set of rules that must be followed when processing a SOAP message and a
simple classification of the entities involved in processing a SOAP message.

d) A set of conventions on how to turn an RPC call into a SOAP message and
back.
SOAP Messages

e SOAP is based on message exchanges. Messages are seen as envelopes where the
application encloses the data to be sent.

e A SOAP message consists of an <Envelope> element containing an optional
<Header> and a mandatory <Body> element.

image15.jpeg
HAHr e 9V S JAAL Mikoodet A dR.

.
| SOAP envelope |

The contents of these elements are '
application defined and not a part of the o SOARIeddol S—
SOAP specification. A SOAP <Header> ;7heiadeirhliock7\

contains blocks of information relevant to [| T —e———e—=

how the message is to be processed. This
helps pass information in SOAP messages e

that is not for the application but for the i S0AEIbody i .
SOAP engine. | Body block ;

The SOAP <Body> is where the main
end-to-end information conveyed in a
SOAP message must be carried.

Fig. 5.2.5 SOAP message format
SOAP headers have been designed in

anticipation of participation of other SOAP
processing nodes, called SOAP intermediaries along a message's path from an
initial SOAP sender to an ultimate SOAP receiver.

A SOAP message travels along the message path from a sender to a receiver. All
SOAP messages start with an initial sender, which creates the SOAP message, and
end with an ultimate receiver.

The SOAP body is the area of the SOAP message, where the application specific
XML data (payload) being exchanged in the message is placed.

A SOAP message may carry either application-specific data or a fault, but not
both.

m Other Technologies

XHTML : It is markup language. It is used to make HTML more extensible and
increase inter-operability with other data.

XSL (Extensible Style Sheets Language) : It is used to transforms XML into other
formats, like html, formatting XML to screen, paper etc.

XQuery (XML Query Language) : It is XML based language which is used to
query XML based data.

XQuery is an XML query language that makes use of XPath to query XML
structures. However it also allows for functions to be defined and called as well as
complex querying of data structures using FLWOR expressions.

image16.jpeg
e XPath specifies path expression that matches XML data by navigating down the
tree. XPath is used as the embedded query language for both XQuery 1.0 and
XSLT 2.0.

® XQuery is a declarative language. It facilitates the data extraction from XML
documents.

e XSD (XML Schema Definition) : It is used to describe the structure of an XML
documents. An XML schema is used to define the structure of an XML document.
It is like DTD but provides more control on XML structure.

e SOAP (Simple Object Access Protocol) : It is a protocol which is used for accessing
web-services.

e WSDL (Web Service Description Language) : It is used to describe web services. It
also describes the functionality offered by a web service.

e RDF (Resource Description Framework) : It is XML based language to describe
web resources. It is standard model for data interchange on web. It describes the
title, author, content and copyright information of a web page.

EXET] Difference between DTD and XSD

DTD Schema (XSD)
It is derived from SGML syntax. It is written in XML.
DTD doesn't support datatypes. XSD supports datatypes for elements and
attributes.
Doesn't support namespace. Supports namespace.
It doesn't define order for child elements. It defines order for child elements.
DTD is not extensible. XSD is extensible.
Learning is not simple Simple to learn
DTD provides less control on XML structure. XSD provides more control on XML structure.

FE] XML Schema

1. XML Schema is an XML-based language for describing XML types proposed by the
WwsC

e An XML schema :
a. Defines elements that can appear in a document
b. Defines attributes that can appear within elements

c. Defines which elements are child elements

image17.jpeg
d. Defines the sequence in which the child elements can appear
e. Defines the number of child elements
f. Defines whether an element is empty or can include text

g. Defines default values for attributes

e The purpose of a schema is to define the legal building blocks of an XML
document, just like a DTD.

e When we say "XML Schemas," we usually mean the W3C XML schema language.
This is also known as "XML Schema Definition" language, or XSD.

e DTDs, XML schemas, and RELAX NG are all XML schema languages. An XML
document that conforms to a schema document is schema valid and a document
that does not conform is invalid.

e Unlike DTDs, schema do not use the Extended Backus-Naur Form (EBNF)
grammar. Instead, schema use XML syntax. Because schemas are XML documents,
they can be manipulated (e.g., elements added, elements removed, etc.) like any
other XML document. Later, we will discuss how to manipulate XML documents
programmatically.

<?xml version="1,0"?>
<xs:schema xmlns:xs="http://www.w3.0rg/2001/XMLSchema">
<xs:element name="phoneNumbers">
<xs:complexType>
<xs:sequence>
<xs:element name="title" type="xs:string"/>
<xs:element name="entries">
<xs:complexType>
<xs:sequence>
<xs:element name="entry" minOccurs="0"maxOccurs="unbounded">
<xs:complexType>
<xs:sequence>
<xs:element name="name">
<xs:complexType>
<xs:sequence>
<xs:element name="first" type="xs:string"/>
<xs:element name="middle" type="xs:string" minOccurs="0"/>
<xs:element name="last" type="xs:string"/>
</xs:sequence>
</xs:complexType>

image18.jpeg
</xs:element>
<xs:element name="phone" type="xs:string"/>
<xs:element name="city" type="xs:string" minOccurs="0"/>
</xs:sequence>
</xs:complexType>
</xs:element>
</xs:sequence>
</xs:complexType >
</xs:element>
</xs:sequence>
</xs:complexType >
</xs:element>
</xs:schema>
In an XML schema we specify an empty element by defining a complex type
element with no content.
<complexType> </complexType> or <complexType/>
Elements that are defined at the top level inside of the xs:schema element are
visible throughout the document and can be referenced inside any element

definition by using the ref attribute in place of the name attribute. This referencing
mechanism can be used to reduce the kind of redundancy.

EEXN ROF

The Resource Description Framework (RDF) is a W3C recommendation since
February 2004 which jointly replaced RDF Model and Syntax and RDF Schema.

RDF provides a means for adding semantics to a document without making any
assumptions about the structure of the document and it provides pre-defined
modeling primitives for expressing semantics of data.

RDF is domain-independent and can be used to model both real world objects and
information resources. RDF itself is a very primitive modeling language, but it is
the basis of more complex languages such as OWL.

RDF was developed with the motivation to provide web meta data and open
information models, to get new information by combining data from several
applications and to enable automated processing of web information by software
agents.

RDF is the foundation layer of the Semantic Web. The semantics are encoded in
sets of triples, where each triple consists of a subject, a predicate or property and
an object, similar to what we have in natural language sentences.

image19.jpeg
An RDF statement has three components : a subject, a predicate, and an object.

1. The subject is the source of the edge and must be a resource.

2. The object of a statement is the target of the edge. Like the subject, it can be a
resource identified by a URI, but it can alternatively be a literal value like a
string or a number.

3. The predicate of a statement determines what kind of relationship holds
between the subject and the object. It too is identified by a URL

Fig. 53.1 shows an
example RDF graph. http://vtubooks.com/pers-schema#Author

The RDF Vocabulary f
Description language RDF

Schema (RDFS) is an http://vtubooks.com/rupali

extension to RDF which

facilitates the formulation D‘ny \"”5

of vocabularies for RDF

meta data. While RDF is rupali http://vtubooks.com/rakshita
used to relate resources by
means of properties, RDFS
introduces the notions of resource classes and their hierarchies.

The combined use of both RDF and RDFS is often referred to as RDF(S) and
provides a simple ontology language for conceptual modeling with some basic

interfacing capabilities.

rdf:type

Fig. 5.3.1 Example RDF graph

Fig. 5.3.2 shows an RDF graph, which is a set of RDF triples. A node may be a
URI reference or blank, which means that it is a unique node with no separate

http://www.job.org/company_x

http://www.henrys_
page.de/Henry

Fig. 5.3.2 RDF triple relations between resources, literals and blank-nodes

image20.jpeg
form of identification. The object node can also be a literal. The property is also a
URL

An RDF graph is defined as a set of RDF triples. A subgraph of an RDF graph is
a subset of the triples in the graph.

A triple is identified with the singleton set containing it, so that each triple in a
graph is considered to be a subgraph.

A proper subgraph is a proper subset of the triples in the graph. A ground RDF
graph is one with no blank nodes.

The Resource Description Language Schema (RDFS) is a vocabulary language that
provides the users to define terms they intend to use in their RDF document,
similar to the design in Object Oriented Programming (OOP) languages.

A set of names is referred to as a vocabulary. The vocabulary of a graph is the set
of names which occur as the subject, predicate or object of any triple in the graph.

A triple table is a set of RDF triples; it is a representation of the RDF graph. A
triple store or an RDF database is an engine enabling to store an RDF graph and
efficient processing of queries. However, we usually require other operations like
update, insert or delete.

Some RDF stores add a fourth element to the triple; this fourth element contains
the context of the triple. There are RDF engines enabling to manage these quads.

Fig. 5.3.3 shows an example of an RDF graph with fragment of an RDF triple
table.

(" GoldenLeague

]
|
| dom | eiates). 298

\ dom | — range
(o

) ganized
EE

¥ PoleVault |
pe N

Fig. 5.3.3 (a) RDF graph

image21.jpeg
Subject Property Object

Long Jump Type Jump
Blanka Vlasic Jumps High Jump

Golden League Type Meeting

Fig. 5.3.3 (b) Fragment of an RDF triple table
e Modify the following XML document so that it is also a valid RDF document

XML
<?xml version="1,0"?>
<River id="Yangtze"
xmins="http://www.geodesy.org/river'>

<length>6300 kilometers</length>

<startingLocation>western China's Qinghai-Tibet Plateau</startingLocation>

<endingLocation>East China Sea</endingLocation>
</River>

RDF format :
<?xml version="1,0"?>
<River rdf:ID="Yangtze"
xmins:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xmins="http://www.geodesy.org/river#">
<length>6300 kilometers</length>
<startingLocation>western China's Qinghai-Tibet Plateau</startingLocation>
<endingLocation>East China Sea</endingLocation>
</River>
e The fundamental design pattern of RDF is to structure your XML data as
resource/property/value triples!
<7xml version="1,0"?>
<Resource-A>
<property-A>
<Resource-B> —
<property-B> .
<Resource-C> [

<pmperty-C>‘: ;I — o= =2 e = gy |
Value-C —fvalue of propertyr’lz‘value of property -B |
q_ — - __ -

</property-C & - S
</Resource-C> L ‘ f

</property-B> o \: -
</Resource-B>

< /property-A>

image22.jpeg
e Notice that the RDF design pattern is an alternating sequence of resource-property.
This pattern is known as "striping".

e The four important RDFS vocabulary definitions are rdfs:Class, rdf:Property,
rdfs:domain and rdfsirange. They define which nodes are connected through a
certain property.

e Things described by RDF expressions are called resources, and are considered to
be instances of the class rdfs:Resource. The RDF class rdfs:Resource represents the
set called 'Resources' in the formal model.

1

rdf:Property : This represents the subset of RDF resources that are properties,
ie., all the elements of the set called 'Properties’ the formal model. Example :
ex:author rdf:type rdf:Property .

O Then, property ex:author can be used as a predicate in an RDF triple such
as the following :

O ex:Rupali ex:sportman ex:cricket

© In RDFS property definitions are independent of class definitions. In other
words, a property definition can be made without any reference to a class.

O Optionally, properties can be declared to apply to certain instances of classes
by defining their domain and range.

rdfs:Class : This corresponds to the generic concept of a Type or Category,

similar to the notion of a Class in object-oriented programming languages such
as Java. When a schema defines a new class, the resource representing that
class must have an rdf:type property whose value is the resource rdfs:Class.
RDF classes can be defined to represent almost anything, such as Web pages,
people, document types, databases or abstract concepts.

e Every RDF model which uses the schema mechanism also (implicitly) includes the
core properties. These are instances of the rdf:Property class and provide a
mechanism for expressing relationships between classes and their instances or

superclasses.

3.

rdf:type: This indicates that a resource is a member of a class, and thus has all
the characteristics that are to be expected of a member of that class. The value
of an rdf:type property for some resource is another resource which must be an
instance of rdfs:Class. The resource known as rdfs:Class is itself a resource of
rdf:type rdfs:Class.

rdfs:range: An instance of ConstraintProperty that is used to indicate the
class(es) that the values of a property must be members of. The value of a
range property is always a Class. Range constraints are only applied to
properties. A property can have at most one range property. It is possible for it

image23.jpeg
to have no range, in which case the class of the property value is
unconstrained.

5. rdfs:domain: This is an instance of ConstraintProperty that is used to indicate
the class(es) on whose members a property can be used. If a property has no
domain property, it may be used with any resource. If it has exactly one
domain property, it may only be used on instances of that class. If it has more
than one domain property, the constrained property can be used with instances
of any of those classes.

e For a property, we can have zero, one, or more than one domain or range
statements. No domain or no range statement : If no range statement has been
made for property P, then nothing has been said about the values of this
property. Similarly for no domain statement.

Some Utility Properties
1. rdfs:label
2. rdfs:comment
3. rdfs:seeAlso
4. rdfsiisDefinedBy

e rdfs:label is an instance of rdf:Property that may be used to provide a
human-readable version of a resource's name. The rdfs:domain of rdfs:label is
rdfs:Resource. The rdfsirange of rdfs:label is rdfs:Literal. Multilingual labels are
supported using the language tagging facility of RDF literals.

e rdfs:comment is an instance of rdf:Property that may be used to provide a
human-readable description of a resource. The rdfs:domain of rdfs:comment is
rdfs:Resource. The rdfs;range of rdfsicomment is rdfs:Literal. Multilingual
documentation is supported through use of the language tagging facility of RDF
literals.

e rdfs:seeAlso is an instance of rdf:Property that is used to indicate a resource that
might provide additional information about the subject resource. A triple of the
form S rdfs:iseeAlso O states that the resource O may provide additional
information about S. It may be possible to retrieve representations of O from the
Web, but this is not required. When such representations may be retrieved, no
constraints are placed on the format of those representations.

e The rdfs:domain of rdfs:seeAlso is rdfs : Resource. The rdfs:range of rdfs:seeAlso is
rdfs:Resource.

image24.jpeg
rdfs:isDefinedBy is an instance of rdf : Property that is used to indicate a resource
defining the subject resource. This property may be used to indicate an RDF
vocabulary in which a resource is described.

RDF Schema descriptions are not prescriptive in the way programming language
type declarations typically are.

RDF Schema provides schema information as additional descriptions of resources,
but does not prescribe how these descriptions should be used by an application.

RDF is a graph data model. RDF data are directed, labeled graphs. A single edge
in an RDF graph is a 3-tuple that is called either a statement or triple.

Triples are organized into named graphs, forming 4-tuples, or quads. RDF
resources (nodes), predicates (edges), and named graphs are labeled by URIs.

The RDFS language is used by various web-based applications for describing meta
data and a number of tools are available that support visual editing and
programmatic handling of RDFS descriptions.

RDF is a language for expressing the information that needs to be processed by
applications, so that it can be exchanged without loss of meaning. The data does
not need to be stored in RDF but can be created on the fly from relational
databases or other non-RDF sources.

RDF data smushing

Smushing is the process of normalising an RDF dataset in order to unify a priori
different RDF resources which actually represent the same thing.

The application which executes a data smushing process is called a smusher.
The process comprises two stages :

1. Redundant resources are identified ;

2. The dataset is updated to reflect the recently acquired knowledge.

The latter is usually achieved by adding new triples to the model to relate the
pairs of redundant resources. The owl:sameAs is often used for this purpose,
although other properties without built-in logic interpretations can be used as well

RDF Reification

The RDF proposes RDF reification, which introduces a new identifier for a
statement and then describes the original RDF statement using three new triples
with subject, predicate, and object properties.

RDF reification is used to attach additional information to the event represented
by the original RDF triple.

image25.jpeg
e RDF Reification example :

Suresh Marries Deepa
s _type statement
s subject Suresh

s property marries

s object Deepa

s time 1998

e In RDF reification, an entity is defined that stands for a whole triple so that
additional triples can be used to describe the reified triple as a unit that represents
a statement.

e However, in the context of event semantics, reification is used to denote the
process by which an entity is defined that refers to the event, process, situation, or
more generally, frame, evoked by a property or binary relation.

RDF vocabulary

Basic constructs 1. rdfitype

2. rdf:Property

3. rdf:XMLLiteral
Collections 1. rdfiList

2. rdfSeq

3. rdf:Bag

4. rdfAlt

5. rdffirst

6. rdfirest

7. rdfnil

8. rdfin

9. rdfivalue
Reification 1. rdf:Statement

2. rdfsubject

3. rdfpredicate

4. rdfobject

image26.jpeg
m XML Query Language

e XML query languages can be used over any XML document.

5.4.1 RIS

e The Lorel language was originally designed for querying semi-structured data.
Lorel has been extended and modified to be able to query XML data efficiently.

e It is an extension to OQL, with a SELECT-FROM-WHERE structure. It relieves the
user from the strict typing of OQL and provides powerful path expression.

e Example :
Select x
From DBGroup.Member x
Where exists y in x.Age: y<30
e Operands : constants, named objects, variables
e Operations : Selection, set, quantification, aggregation
e Path expression can appear in select, from or where clause

e Features of the Lorel query language are :
a) Lorel query language is an extension to OQL with the SQL/OQL style of
querying.
b) In Lorel, an XML data model can be represented either as a literal tree, where

the IDREF(s) attributes are just text strings or as a semantic graph where the
IDREF(s) attributes are actual links.

c) It provides some language constructs to transform data and return structured
results.

d) It does support joins on XML documents from different sources, but not much
information is available on it currently.

e) Path expressions can include wild cards or regular expression operators.

f) Range qualifiers can be added to path expression components or variables.
When this is added, the matched values are limited only to the range specified
in the range qualifier. The range can be a list of single numbers and/or ranges,

e.g., [1-3, 5]

image27.jpeg
XQuery : Query Language for XML

XQuery is an XML query language that makes use of XPath to query XML
structures. However it also allows for functions to be defined and called, as well
as complex querying of data structures using FLWOR expressions.

XPath specifies path expression that matches XML data by navigating down the
tree. XPath is used as the embedded query language for both XQuery 1.0 and
XSLT 2.0

XQuery is a declarative language. It facilitates the data extraction from XML
documents. Fig. 5.4.1 shows relation between XQuery, XLink and XSLT.

XPath provides a common syntax and semantics for functionality shared between
XSLT and XPointer.

XPath is used in XSL transformations to find information in an XML document. It
is used to navigate through elements and attributes in XML documents.

(KN

Fig. 5.4.1

XQuery is supported by all the major databases engine (IBM, Oracle, Microsoft...)

XQuery is a declarative language and intends to play for XML data the role of
SQL in the relational realm. XQuery is a database language.

In the XQuery model, an XML document is viewed as a tree of nodes. Each node
in a tree has a kind and possibly a name, a value or both. Fig. 5.4.2 shows XQuery
model. (See Fig. 5.4.2 on next page)

XQuery is a functional language. An expression is a syntactic construct which
operates on a sequence (the input) and produces a sequence (the output). Since the

image28.jpeg
output of an expression [
can be used as the input of XQuery
another expression, the

combination of expressions ‘

yields the mechanism to @

create very complex
R 1 XQuery |
queries. : XML | :> :> Text |

In XQuery, all keywords
are written in lower case. #° TNg

XQuery language uses L f—

XPath expression to select HTML XML
parts of XML document
and extends it swith Fig. 5.4.2 : XQuery model

FLWOR expressions which
is an acronym for FOR, LET, WHERE, ORDER BY, RETURN.

XQuery is functional language based on expressions. Any expression take

sequences as input and produces a sequence as output.

Fig. 5.4.3 shows the representation of XQuery.

EESE 0 Citem)
(::) * union type | Ll

node | XS : anyAtomicType |
|
|
| comment

| document element | text | processing - instruction

attribute

Fig. 5.4.3 Representation of XQuery

Basic definition :

1. Atomic types : An atomic type is a primitive simple type or a type derived

(directly or indirectly) by restriction from such a type.

2. Atomic value : An atomic value is a value in the value space of an atomic type

and is labeled with the name of that type.

3. Node : A node is an object with a unique identity and properties. There are
seven kinds of nodes (subclasses) : document, element, attribute, text,

processing instruction and namespace nodes.

4. Ttem : An item is either a node or an atomic value.

image29.jpeg
5. Sequence : A sequence is an ordered collection of one or more items (a list). It
may contain duplicates. If a sequence is inserted into another sequence, it is
automatically "unnested".

e Path expressions are evaluated from left to right. Like a directory hierarchy, the
initial "/" indicates the root of the document.

e When "/" is used at the beginning of a path : /a, it will define an absolute path to
node "a" relative to the root. As such, in this case, it will only find "a" nodes at the
root of the XML tree.

e When // is used at the beginning of a path : //a, it will define a path to node "a"

anywhere within the XML document. As such, in this case, it will find "a" nodes
located at any depth within the XML tree.

e For example, the following XLink uses an XPath to address the second chapter of
a target document :
<xlink:simple href="somedoc.xml# //book/chapter|2]'> Second Chapter </xlink:simple>
e An XPath is a series of steps, much like a directory path, where each step names
an element or other type of XML construct. The XPath in the above example can
be read as "starting with the root of the document (' // '), find the first 'book'
element (' book ') then find the second chapter element (' /chapter[2])".

e The " [2] " is called a predicate and specifies additional rules for selecting an
element. Thus, the string "/chapter[2]" means "from all the chapter elements below
'book’, select the second one." Predicates can be any XPath expression, which may
include things like string matches and external functions.

m FLWOER Expression
e FLWOR expressions are meant to model SQL.FLWOR is an acronym for "For, Let,
Where, Order by, Return", the five components of an XQuery expression.
For - It is used to select a sequence of nodes.
Let - It is used to bind a sequence to a variable.
Where - It is used to filter the nodes.

Order by - It is used to sort the nodes.

ol e LAl MR

Return - It is used to specify what to return (gets evaluated once for every
node).

e Look at the following path expression :
doc ("author.xml")/bookstore/book|price >430]/title

image30.jpeg
e The expression above will select all the title elements under the book elements that
are under the bookstore element that have a price element with a value that is
higher than 430.

e The following FLWOR expression will select exactly the same as the path
expression above :
for $x in doc (“author.xml")/bookstore/book
where $x/price>130
return $x/title
e The result will be :
title lang="en">CSE </title>
title lang="en">Data and Mining </title>
With FLWOR you can sort the result :
for $x in doc("author.xml")/bookstore/book
where $x/price>430
order by $x/title
return $x/title
1. The for clause selects all book elements under the bookstore element into a variable
called $x.

2. The where clause selects only book elements with a price element with a value
greater than 30.

3. The order by clause defines the sort-order. Will be sort by the title element.

4. The return clause specifies what should be returned. Here it returns the title
elements.

e The result of the XQuery expression above will be :
<title lang="en">Data and Mining </title>
<title lang="en">CSE </title>

e In FLWOR expressions, variables will be dynamically assigned during runtime.
While the resulting items of LET will be bound to the associated variable as
sequence once, FOR iterates over the sequence, binding the items one by one.

e Hence, LET variables are immutable within their scope and can be treated similar
to global variables, as long as they are independent, which means that they must
not depend on other dynamic variables in the same scope.

e If variable references are replaced by their expressions, other variables can get
independent, which are substituted next. If static typing indicates that a FOR
variable will return a single item, it can be treated the same as LET.

e The query plan shown below depits the following query :
let $a := 5 let $b := $a* $a return $b

image31.jpeg
e

tet— || T —Let =1 [T
! |var:$a | ([tvar:gp| Return‘

L

i N T T A,
' XS sinteger | Calculation | | VarRef
Ll 4 | operator: , name: $b |

e 2 T

VarRef | VarRef '
name : $a | name:$a |

Five steps are performed to simplify the query :

1. The integer value 5 is statically bound to $a.

2. All subsequent variable references for $a are substituted by its value.
3. Calculation 5 * 5 is pre-evaluated.

4. The result 25 is statically bound to the (now) independent variable $b.
5. The $b reference is substituted by its value.

6. FLWOR is substituted by its return value 25.

FLWOR queries are normalized by rewriting the optional WHERE clause to one or
more predicates and attaching them to the expressions defined by the variable
declarations.

Before the clause can be rewritten, two preconditions must be met :
1. All FOR clauses must not specify a positional or a full-text scoring variable.

2. A recursive algorithm checks if all occurrences of the variables, which are
introduced by FOR, can be removed from the WHERE expression and
substituted with a context item expression (.).

1. The for clauses :

The for clauses allow iteration on a sequence.

For each incoming tuple, the expression in the for clause is evaluated to a
sequence. Each item in this sequence is in turn bound to the for variable.

A tuple is hence produced for each incoming tuple and for each item in the
sequence produced by the for clause for this tuple.

The order in which items are bound by the for clause can be relaxed with
unordered expressions. The following query, using a for and a return clause, is the

image32.jpeg
counterpart of SQL's "SELECT name FROM captains”. $x is bound in turn to each
item in the captains collection.
for $x in collection ('captains")
return $x.name
e Example :
for $iin (1.2).
$iin (1 to $i)
return <tuple>
<i>{$i}</i><j>{$j}</i></tuple>
Result :
<tuple><i>1</i><j>1</j></tuple>
<tuple><i>2</i><j>1</j></tuple>
<tuple><i>2</i><j>2</j></tuple>

2. The let clauses :
e let also binds variables to expressions. Each variable gets the entire sequence as its
value (without iterating over the items of the sequence). The results in binding a
single sequence for each variable.

e Compare :
for $x in /library/book -> Many bindings (books)
let $x := /library/book -> Single binding (to a sequence of books)
et clauses
(<one/>, <two/>, <three/>
return <out> {$s}</out>

Result :
<out>

<one/>
<two/>
<three/>
</out>
3. The where clause :

e where clauses are used for filtering (selection operator in the relational algebra).

e For each incoming tuple, the expression in the where clause is evaluated to a
boolean. If this boolean is true, the tuple is forwarded to the next clause, otherwise
it is dropped.

e The following query corresponds to "SELECT series FROM captains WHERE name

= 'Iresh™.
for $x in collection ('captains")

image33.jpeg
where $x.name eq "Iresh"
return $x.series

4. The return clause :

The return clause generates the result to the FLWOR expression.

The return clause is evaluated one for each tuple of variable bindings that is
generated by other clauses of the FLWOR expression. The order in which tuples of
bound variables are processed by the return clause is non-deterministic unless the
FLWOR expression contains an order by clause.

If the expression in the return clause is a non-updating expression, the results of
all the return clause evaluations are concentrated to form the result of the
non-updating FLWOR expression.

If the expression in the return clause is an updating expression, the result of all
the return clause evaluations is a list of updates. The transform expression that
contains the FLWOR expression performs the updates after merging them with
updates returned by other updating expressions within the modify clause of the
transform expression.

XX XPath 2.0 Data Model

XPath 1.0 is a W3C Recommendation. It is used within XSLT 1.0, XML Schema,
XPointer.

XPath 1.0 is a subset of XPath 2.0, which is essentially a subset of XQuery 1.0.

XPath 2.0 was published as W3C Recommendation on 23 January 2007. XPath 2.0
uses XML Schema types.

XPath 2.0 distinguishes static and dynamic context of an expression.

Any expression that is syntactically valid and executes successfully in both XPath
2.0 and XQuery 1.0 will return the same result in both languages.

XPath 2.0 is a much more powerful language that operates on a much larger
domain of data types.

A better way of describing XPath 2.0 is as an expression language for processing
sequences, with built-in support for querying XML documents.

Driving forces behind XPath 2.0 include not only the XPath 2.0 Requirements
document but also many of the XML Query language requirements.

XPath 2.0 is a strict syntactic subset of XQuery 1.0.

image34.jpeg
e XPath 2.0 introduces support for the XML Schema primitive types, which
immediately gives the user access to 19 simple types, including dates, years,
months, URIs, etc.

¢ In addition, a number of functions and operators are provided for processing and
constructing these different data types.

e Everything is a sequence. Sequences are ordered.

e In XPath 1.0, if you wanted to process a collection of nodes, you had to deal with
node-sets.

e In XPath 2.0, the concept of the node-set has been generalized and extended.

e sequences may contain simple-typed values as well as nodes.
EXA storing XML in Database

e Data-centric documents are documents that use XML as a data transport. They are
designed for machine consumption and the fact that XML is used at all is usually
superfluous.

e Document-centric documents are documents that are designed for human
consumption. Examples are books, email, advertisements, and almost any
hand-written XHTML document. They are characterized by less regular or
irregular structure, larger grained data and lots of mixed content.

e Following are the method to store an XML document in a relational database :
1. Store the XML as the value of some attribute with a tuple.
2. Store the XML in a shredded form across a number of attributes and relations.
3. Store the XML in a schema independent form.
4. Store the XML in a parsed form.

Storing XML in an Attribute

e XML document is decomposed into its constituent elements and data distributed
over a number of attributes in one or more relations. This decomposition is called
shredding.

e Fig. 5.5.1 shows convert XML into relational data.

e XML documents with customer name, address and phone information are mapped
into two relational tables. Documents may contain multiple phone components
because the relationship between the customer and their phone number is a 1-n
relationship.

image35.jpeg
<customerinfo Cid="1003">

<addr country=*Canada®>
<street>845 Kean Str

<city>Aurora</city
<prov-state>Ontario</prov-state>

<peode-zip>NX TF8</poode-zip>

</addr>
<phone type=work">905-555-7258</phone> s .
<phone type="home">416-555-2937</phone> CREATE TABLE address(

<phone type=-cell”>905-555-8743</phone> cid INTEGER,

</customerinfo> name VARCHAR(30),
street VARCHAR(40),
city VARCHAR(30))

CID__| PHONETYPE _| PHONENUM

CREATE TABLE phones(

1003 | work 905-555-7258 / cid INTEGER,
1003 | home 416-555-2937 phonetype VARCHAR(10) ,
1003 | cell 905-555-8743 phonenum VARCHAR(20))

Fig. 5.5.1 Convert XML into relational data

Therefore, the phone numbers will be shredded into a separate table. Each
iterative component, such as phone, will lead to an additional table in the
relational target schema.

Suppose customer information can contain multiple email addresses, multiple
accounts, recent orders list, multiple products in each order and other repeat
items. Then the number of tables required in the relational target schema can
increase very quickly.

However shredding XML into a large number of tables can lead to complex
business logic objects and make application development difficult or error-prone.
Querying data has been shrunk or reassembling the original documents that may
require complex joins.

In unstructured XML storage, XMLType data is stored in the database as CLOB
(Character Large OBjects). Unstructured XML storage is also called CLOB storage
or text-based persistence.

If schema is associated with the XML, then a database structure can be derived
from this schema. Two main approaches are as follows :

1. Relational mapping
2. Object relational mapping

image36.jpeg
e Relational mapping approach starts at the root of the XML document and
associates this element with a relation.

e The object relational mapping models complex element types as classes/types.
These would include element types with attributes, element content and mixed
content. Otherwise, it models simple element types as scalar properties.

e The recursive nature of the structure can cause performance problems when
searching for specific path. This problem is solved by a denormalized index
structure can be created containing combinations of path expressions and a link to
the node and parent node.

BN XML and sQL

e Query languages in XML-enabled databases are used to extract data from the
underlying database and transformit.

1. SQL/XML : For XML-enabled relational databases, the most widely used query
language is SQL/XML, which provides a set of extensions to SQL for creating
XML documents and fragments from relational data and is part of the ISO SQL
specification of 2003.

e The main features of SQL/XML are the provision of an XML data type, a set of
scalar functions, XMLELEMENT, XMLATTRIBUTES, XMLFOREST, and
XMLCONCAT, and an aggregate function, XMLAGG.

e For example, the following call to the XMLELEMENT function :
XMLELEMENT(NAME Customer,
XMLELEMENT(NAME Name, customers.name),
XMLELEMENT(NAME ID, customers.id))
e Constructs the following Customer element for each row in the customers table :
<Customer>
<Name>customer name </Name>
<ID>customer id</ID>
</Customer>

e Creating table using the XML data type :

Create a table to hold staff data as XML data.
CREATE TABLE XMLStaff(
docNo CHAR(4), docDate DATE, staffData XML,
PRIMARY KEY docNo);
As usual, a row can be inserted into this table with the INSERT statement; for
example :
INSERT INTO XML Staff VALUES ('D001', DATE'2012-12-01', XML('<STAFF"),

image37.jpeg
branchNo = "B005">
<STAFFNO>SL21</STAFFNO>
<POSITION>Manager</POSITION>
<DOB>1945-10-01</DOB>
<SALARY>30000</SALARY> </STAFF>'));

SQL/XML functions :

e We can divide the SQL/XML functions into several groups.

a) Publishing functions that are used to define or create XML documents within a
SQL statement.

b) Functions to embed XPath and XQuery statements to query XML documents.
c) Functions to serialize and parse XML documents.
d) Schema validation functions.

e The following table lists the SQL /XML functions within the groups :

SQL/XML function Description
Publishing functions

XMLAGG Concatenates XML elements from a sequence of XML elements.

XMLATTRIBUTES Returns an XML sequence of XML attributes.

XMLCOMMENT Returns an XML comment node.

XMLCONCAT Concatenates XML input arguments into a sequence.

XMLDOCUMENT Returns a single XML document containing document nodes as specified by
the input expression.

XMLELEMENT Returns XML element node.

XMLFOREST Returns a sequence of XML element nodes.

XMLNAMESPACES Construct namespace declarations. Can only be used as an argument for
specific functions such as XMLELEMENT or XMLFOREST.

XMLPI Returns a single XML processing node.

XMLTEXT Returns a single XML text node.

Embed XQuery
XMLEXISTS Tests whether an XQuery expression returns a sequence or not.
XMLMODIFY Returns an XML value modified by the evaluation of an XQuery updating

expression specified as input.

XMLQUERY Returns an XML value from the evaluation of an input XQuery expression.

XMLTABLE Returns a result set from the evaluation of an XQuery expression.

image38.jpeg
Serialize/Parse

XMLCAST Converts the first operand to a type specified by the data type.
XMLPARSE Parses the input argument and returns an XML value.
XMLSERIALIZE Returns a serialized XML value.

Scheme validation

DSN_XMLVARIDATE Returns an XML value after applying the XML schema validation.

XMLXSROBJECTID Returns the XSR object identifier of the XML schema used for validation to
the XML document.

Types of XML Database

* XML database are of two types :
1. XML- enabled 2. Native XML (NXD)

* XML - enabled database : XML enabled database is nothing but the extension
provided for the conversion of XML document. This is a relational database,

where data is stored in tables consisting of rows and columns. The tables contain
set of records, which in turn consist of fields.

e Native XML database : Native XML database is based on the container rather than

table format. It can store large amount of XML document and data. Native XML
database is queried by the XPath-expressions.

e Native XML database has an advantage over the XML-enabled database. It is
highly capable to store, query and maintain the XML document than XML-enabled
database.

Native XML Database

* A database that defines a (logical) model for an XML document, as opposed to the
data in that document and stores and retrieves documents according to that
model.

* XML database is native if it

a) Defines a logical model for an XML document and stores and retrieves
documents according to that model.

b) Has an XML document as its fundamental unit of (logical) storage.

¢) The storage model itself is not constrained.

image39.jpeg
e lhe only interface to native XML database data is XML itselt and its related
technologies, including the Simple API for XML (SAX), Document Object Model
(DOM), XML Path Language (XPath), and XML Query Language (XQuery).

e Fig. 552 shows an abstract view of native XML data-store components.

Applications/APIs
| (DOM, SAX, Apache)

Query | " Data
manager manager

Index |
manager |,

|
Storage manager i

: Relational |
)

File systemJ

Fig. 5.5.2 An abstract view of native XML data-store component

a) Native XML interface to map the particular application to the underlying
framework, and

b) Storage manager to manage data access for querying or updating.

e Native XML data stores can work with any underlying physical storage model or
proprietary storage format.

e Native XML data stores accept XML documents in the following formats :

1. Text : Data stores keep entire XML documents in textual format and manages
them through database capabilities.

image40.jpeg
2. Tree-based : Using DOM, data stores keep documents in a tree-based
representation under an existing or custom database, and then map the binary
model to the underlying database format.

Tree-based implementations are beneficial for navigation-oriented applications,
because the tree corresponding to the XML document is typically easier to parse
and process than multiple tables, which require join operations.

Native XML data stores have three key benefits :

1. Scalability : Because native XML tools are based on an XML internal format,
they can more easily scale to meet either client- or server-side requirements.

2. Data-access speed : Native XML tools don't require overhead time for
mappings, interchanges, and joins between XML and other internal structures.

3. Reliability : Converting to and from XML can result in mismatches between
the original XML structure hierarchy and the resulting table. Native tools avoid
this problem in that they use XML for the internal document representation.

m Web Databases

A web database is a database application designed to be managed and accessed
through the Internet. Website operators can manage this collection of data and
present analytical results based on the data in the web database application. Web
databases can organize personal or business data.

A web database is a system for storing and displaying information that is
accessible from the Internet / web. The database might be used for any of a wide
range of functions, such as a membership database, client list, or inventory
database. A web database is a type of web application.

A web database is ideal for situations when the information should be shared, or
when it must be accessed from various locations. It is especially beneficial when
the system is to be shared between locations or different devices (like tablets,
computers and cell phones).

A web database is a dynamic website that indexes searchable information.

A typical web database will point to pages that have been deleted, altered or
moved to another location. The creator or user of a web database has no control
over the external pages referenced or linked to. Because of this non-static nature of
the Internet, web database administrators attempt to keep on top of data changes
and links to external pages.

Web databases store information in record and index structures. The record
structure is visible to users, while the index structure is typically not available for

image41.jpeg
users to browse. A number of web databases use artificial intelligence to handle
updates to links.

When a source of data moves to a new location on the Internet, the artificial
intelligence changes the hyperlink's address to match the new destination.

The most common web databases are MySQL, Oracle, Microsoft SQL Server,
Postgre SQL, IBM DB2 and HSQLDB. The platforms web databases run on are
Windows, Linux, Unix, and Solaris. Preprocessor hypertext (PHP) scripting
language is used to create web databases.

m Geographic Information Systems

A Geographic Information System (GIS) is a framework for gathering, managing,
and analyzing data.

GIS is more than just software. People and methods are combined with geospatial
software and tools, to enable spatial analysis, manage large datasets, and display
information in a map/graphical form.

GIS can be used as tool in both problem solving and decision making processes,
as well as for visualization of data in a spatial environment.

Geospatial data can be analyzed to determine

1) the location of features and relationships to other features,

2) where the most and/or least of some feature exists,

3) the density of features in a given space,

4) what is happening inside an area of interest

5) what is happening nearby some feature or phenomenon, and

6) and how a specific area has changed over time.

GIS data can be split into two main categories : vector and raster data.

Vector data is data that is represented as either points, lines, or polygons. Raster
data is data that is cell-based such as aerial imagery and elevation data.

GIS applications include both hardware and software systems. These applications
may include cartographic data, photographic data, digital data, or data in
spreadsheets.

Cartographic data are already in map form, and may include such information as
the location of rivers, roads, hills, and valleys. Cartographic data may also include
survey data and mapping information that can be directly entered into a GIS.

Photographic interpretation is a major part of GIS. Photo interpretation involves
analyzing aerial photographs and assessing the features that appear.

image42.jpeg
Digital data can also be entered into GIS. An example of this kind of information
is computer data collected by satellites that show land use-the location of farms,
towns, and forests.

Remote sensing provides another tool that can be integrated into a GIS. Remote
sensing includes imagery and other data collected from satellites, balloons, and
drones.

Finally, GIS can also include data in table or spreadsheet form, such as population
demographics. Demographics can range from age, income, and ethnicity to recent
purchases and internet browsing preferences.

GIS technology allows all these different types of information, no matter their
source or original format, to be overlaid on top of one another on a single map.
GIS uses location as the key index variable to relate these seemingly unrelated
data.

Biological Data Management

Biological data come from all fields of biology and in many formats. With the
rapid advances of various high-throughput technologies, large amount of data has
been generated using sequencing (nucleic acid and protein), microarray technology
and macromolecule structural determination approaches, especially in efforts to
understand and treat human diseases.

Biological databases are libraries of life sciences information, collected from
scientific ~ experiments, published literature, —high-throughput experiment
technology, and computational analysis.

Biological databases can be broadly classified into sequence, structure and
functional databases.

Biological databases emerged as a response to the huge data generated by low-cost
DNA sequencing technologies. One of the first databases to emerge was GenBank,
which is a collection of all available protein and DNA sequences.

Biological databases can be roughly divided into two categories :

1. Primary Database

Primary databases are also called as archieval database.

They are populated with experimentally derived data such as nucleotide sequence,
protein sequence or macromolecular structure.

Experimental results are submitted directly into the database by researchers, and
the data are essentially archival in nature.

image43.jpeg
e Once given a database accession number, the data in primary databases are never
changed : They form part of the scientific record.

e Examples : ENA, GenBank and DDBJ (nucleotide sequence), Array Express
Archive and GEO (functional genomics data), Protein Data Bank
2. Secondary Database

e Secondary databases comprise data derived from the results of analysing primary
data.

e Secondary databases often draw upon information from numerous sources,
including other databases (primary and secondary), controlled vocabularies and
the scientific literature.

e They are highly curated, often using a complex combination of computational
algorithms and manual analysis and interpretation to derive new knowledge from
the public record of science.

e Examples : InterPro (protein families, motifs and domains), UniProt
Knowledgebase (sequence and functional information on proteins), Ensembl
(variation, function, regulation and more layered onto whole genome sequences)

Importance of Databases

e Databases act as a store house of information.

e Databases are used to store and organize data in such a way that information can
be retrieved easily via a variety of search criteria.

e It allows knowledge discovery, which refers to the identification of connections
between pieces of information that were not known when the information was
first entered. This facilitates the discovery of new biological insights from raw
data.

e Secondary databases have become the molecular biologist's reference library over
the past decade or so, providing a wealth of information on just about any gene or
gene product that has been investigated by the research community.

o It helps to solve cases where many users want to access the same entries of data.
e Allows the indexing of data.

e It helps to remove redundancy of data.
Cloud Based Databases

e NIST definition of cloud: Cloud computing is a pay-per-use model for enabling
available, convenient, on-demand network access to a shared pool of configurable

image44.jpeg
computing resources (e.g., networks, servers, storage, applications, services) that
can be rapidly provisioned and released with minimal management effort or
service-provider interaction.

A cloud database is a database service built and accessed through a cloud
platform. It serves many of the same functions as a traditional database with the
added flexibility of cloud computing. Users install software on a cloud
infrastructure to implement the database.

Cloud-based databases enable users to store, manage and retrieve their structured,
unstructured and semi-structured data via a cloud platform, accessible over the
Internet. Cloud databases are also known as database as a service (DBaaS), since
they are often offered as a managed service.

Cloud database management system is a distributed database that delivers
computing as a service. It is sharing of web infrastructure for resources, software
and information over a network. It enables user to outsource the resource and
services to the third-party server

Cloud databases can be divided into two broad categories : relational and
nonrelational.

A relational database, typically written in Structured Query Language (SQL), is
composed of a set of interrelated tables that are organized into rows and columns.
The relationship between tables and columns (fields) is specified in a schema.
Popular cloud platforms and cloud providers include MySQL, Oracle, BM DB2
and Microsoft SQL Server. Some cloud platforms such as MySQL are open
sourced.

Nonrelational databases, sometimes called NoSQL, do not employ a table model.
Instead, they store content, regardless of its structure, as a single document. This
technology is well-suited for unstructured data, such as social media content,
photos and videos.

Cloud environments impose new requirements to data management; specifically, a
cloud data management system needs to have :

1. Scalability and high performance, because today's applications are experiencing
continuous growth in terms of the data they need to store, the users they must
serve, and the throughput they should provide;

2. Elasticity, as cloud applications can be subjected to enormous fluctuations in
their access patterns;

3. Ability to run on commodity heterogeneous servers, as most cloud
environments are based on them;

image45.jpeg
4. Fault tolerance, given that commodity machines are much more prone to fail
than high-end servers;

5. Security and privacy features, because the data may now be stored on
third-party premises on resources shared among different tenants;

6. Availability, as critical applications have also been moving to the cloud and
cannot afford extended periods of downtime.

Cloud database management system is a database that typically runs on a cloud
computing platform, such as Amazon EC2, GoGrid, Salesforce.

There are two methods to run a database on the cloud : Virtual machine

1. Virtual machine

In a pure virtual machine architecture, the operating system gives each process the
illusion that it is the only process on the machine. The user writes an application
as if only its code were running on the system.

Each user interacts with the computer by typing commands to the virtual machine
on a virtual system console and receiving results back from the machine as soon
as they are computed.

Each user directs the virtual machine to perform different commands. These
commands are then executed on the physical machine in a multiprogramming
environments.

Virtualization is an abstraction layer that decouples the physical hardware from
the operating system to deliver greater IT resource utilization and flexibility.

It allows multiple virtual machines, with heterogeneous operating systems to run
in isolation, side-by-side on the same physical machine.

Cloud platforms allow users to purchase virtual machine instances for a limited
time and also possible to run a database on these virtual machines. The user uses
their own machine image with a database installed on it as well as use ready
made machine images that already include an optimized installation of a database.

Database as a service : Some of the cloud platforms offer options for using a
database as a service but without physically launching a virtual machine instance
for the database and this configuration. they do not have install and maintain a
database on their own.

image46.jpeg
Cloud Storage Architecture

Cloud storage is a digital storage solution which utilizes multiple servers to store
data in logical pools. The organizations buy the storage capacity from the
providers to store user, organization, or application data.

There are two major providers in the field of cloud storage namely :

1. Amazon S3 : It enables file storage to multiple servers and offers file
encryption wherein we can share the data publicly.

2. Google cloud : It offers unlimited storage space. It also has the ability to
resume the file transfer after a failure.

Fig. 5.7.1 shows cloud storage architecture.

| Third

| Party
| Auditor

g, Cloud servers

Fig. 5.7.1 Cloud storage architecture

Cloud service is any service made available to users on demand via the Internet
from a cloud computing provider's servers as opposed to being provided from a
company's OWn on-premises servers.

Cloud services are designed to provide easy, scalable access to applications,
resources and services, and are fully managed by a cloud services provider.

A cloud service can exist as a simple web-based software program with a technical
interface invoked via the use of a messaging protocol, or as a remote access point
for administrative tools or larger environments and other IT resources.

The organization that provides cloud-based IT resources is the cloud provider.
Cloud providers normally own the IT resources for lease by cloud consumers, and
could also resell IT resources leased from other providers.

image47.jpeg
e Cloud computing, often described as a stack, has a broad range of services built
on top of one another under the name cloud.

e However, with every type of cloud
storage, there are challenges in the
implementation. These challenges include :
security, data integrity, power, replication
time and costs, reliability.

Private cloud

e Cloud storage models are refers to the
location and management of the cloud's
infrastructure.

e Deployment models are defined by the
ownership and control of architectural
design and the degree of available
customization. Cloud deployment models
are private, public and community clouds.

Fig. 5.7.2 (a) Private cloud

|

e Fig. 5.7.2 shows cloud storage model.

[}
Organization 1 Organization 2
Fig. 5.7.2 (b) Public cloud Fig. 5.7.2 (c) Community cloud

1. Public cloud :

e The cloud infrastructure is made available to the general public or a large industry
group and is owned by an organization selling cloud services.

image48.jpeg
e Public cloud is a huge data centre that offers the same services to all its users. The
services are accessible for everyone and much used for the consumer segment.

e Examples of public services are Facebook, Google and LinkedIn
e Public cloud benefits :
a) Low investment hurdle : Pay for what you use.

b) Good test/development environment for applications that scale to many
servers.

e Public cloud risks :
a) Security concerns : Multi-tenancy and transfers over the Internet.

b) IT organization may react negatively to loss of control over data centre
function.

2. Private cloud :

e The cloud infrastructure is operated solely for a single organization. It may be
managed by the organization or a third party and may exist on-premises or
off-premises.

e Private cloud benefits :
a) Fewer security concerns as existing data centre security stays in place.
b) IT organization retains control over data centre.

e Private cloud risks :

a) High investment hurdle in private cloud implementation, along with purchases
of new hardware and software.

b) New operational processes are required; old processes not all suitable for
private cloud.

3. Community cloud :

e The cloud infrastructure is shared by several organizations and supports a specific
community that has shared concerns (e.g. mission, security requirements, policy, or
compliance considerations). It may be managed by the organizations or a third
party and may exist on-premises or off-premises.

4. Hybrid cloud :

e The cloud infrastructure is a composition of two or more clouds (private,
community or public) that remain unique entities but are bound together by
standardized or proprietary technology that enables data and application
portability (e.g., cloud bursting for load-balancing between clouds).

image49.jpeg
e Hybrid cloud benefits :

a) Operational flexibility : Run mission critical on private cloud, dev/test on

public cloud.

b) Scalability : Run peak and bursty workloads on the public cloud.

e Hybrid cloud risks :

a) Hybrid clouds are still being developed; not many in real use

b) Control of security between private and public clouds, some of same concerns

as in public cloud.

Difference between Public and Private Cloud

Public cloud

Private cloud

Public cloud infrastructure is offered via web
applications and also as web services over
Internet to the public.

Private cloud infrastructure is dedicated to a
single organization.

Support multiple customer

Full utilized of infrastructure.

Support dedicated customer

Does not utilize shared infrastructure

Security is low as compared to private cloud

High level of security

Low cost

High cost

Azure, Amazon Web Services, Google App
Engine and Force.com are a few examples of
public clouds.

An example of the private cloud is NIRIX's one
server with dedicated servers.

Advantages and Disadvantages of Cloud Storage

Advantages :

1. File accessibility - The files can be accessed at any time from any place so long as

you have Internet access.

2. Offsite backup - Cloud storage provides organizations with offsite (remote)

backups of data which in turn reduces costs.

3. Effective use of bandwidth - Cloud storage uses the bandwidth effectively i.e.
instead of sending files to recipients, a web link can be sent through email.

4. Security of data - Helps in protecting the data against ransomware or malware as
it is secured and needs proper authentication to access the stored data.

image50.jpeg
Disadvantages :

1. Dependency on Internet speed - If the Internet connection is slow or unstable, we
might have problems accessing or sharing the files.

2. Dependency on a third party - A third party service provider (company) is
responsible for the data stored and hence it becomes an important pre-requisite in
selecting a vendor and to examine the security standards prior investing.

3. High cost for huge data - Organizations that require a large amount of storage
may also find costs increase significantly even after the first few gigabytes of data
stored.

4. No/Minimal control over data storage framework - Since the cloud storage
framework is entirely managed and monitored by the service provider, the
customer has minimal control over it .

Query Language : NoSQL

e NoSQL means Not Only SQL, it solves the problem of handling huge volume of
data that relational databases cannot handle. NoSQL databases are schema free
and are non-relational databases. Most of the NoSQL databases are open source.

e NoSQL encompasses structured data, semi-structured data, unstructured data, and
polymorphic data.

Why NoSQL ?
It can handle large volumes of structured, semi-structured and unstructured data.
e Agile sprints, quick iteration and frequent code pushes.
® Object-oriented programming that is easy to use and flexible.
e Scale-out architecture.
Types of NoSQL stores -
1. Column Oriented (Accumulo, Cassandra, HBase)
2. Document Oriented (MongoDB, Couchbase, Clusterpoint)
3. Key-value (Dynamo, MemcacheDB, Riak)
4. Graph (Allegro,Neo4j,OrientDB)

e NoSQL database can manage information using any of four primary data models :

1. Key-value store

e In the key-value structure, the key is usually a simple string of characters, and the
value is a series of uninterrupted bytes that are opaque to the database.

image51.jpeg
e The data itself is usually some primitive data type (string, integer, array) or a
more complex object that an application needs to persist and access directly.

e This replaces the rigidity of relational schemas with a more flexible data model
that allows developers to easily modify fields and object structures as their
applications evolve.

e In general, key-value stores have no query language. They simply provide a way
to store, retrieve, and update data using simple GET, PUT and DELETE
commands.

e The simplicity of this model makes a key-value store fast, easy to use, scalable,
portable, and flexible.
2. Document-based

e A document is an object and keys (strings) that have values of recognizable types,
including numbers, Booleans, and strings, as well as nested arrays and
dictionaries.

e Document databases are designed for flexibility. They aren't typically forced to
have a schema and are therefore easy to modify.

e If an application requires the ability to store varying attributes along with large
amounts of data, document databases are a good option.

e MongoDB and Apache CouchDB are examples of popular document-based
databases.
3. Column-based

e Column-based is also called 'wide column' models enable very quick data access
using a row key, column name, and cell timestamp.

o The flexible schema of these types of databases means that the columns don't have
to be consistent across records, and you can add a column to specific rows
without having to add them to every single record.

e The wide, columnar stores data model, like that found in Apache Cassandra, are
derived from Google's BigTable paper.
4. Graph-based

e The modern graph database is a data storage and processing engine that makes
the persistence and exploration of data and relationships more efficient.

e In graph theory, structures are composed of vertices and edges, or what would
later be called "data relationships."

image52.jpeg
e Graphs behave similarly to how people think, in specific relationships between
discrete units of data.

e This database type is particularly useful for visualizing, analyzing, or helping you
find connections between different pieces of data.

e As a result, businesses leverage graph technologies for recommendation engines,
fraud analytics, and network analysis. Examples of graph-based NoSQL databases
include Neo4j and JanusGraph.

X Introduction to Big Data

e Big data can be defined as very large volumes of data available at various sources,
in varying degrees of complexity, generated at different speed i.e. velocities and
varying degrees of ambiguity, which cannot be processed using traditional
technologies, processing methods, algorithms, or any commercial off-the-shelf

solutions.

e Big data' is a term used to describe collection of data that is huge in size and yet
growing exponentially with time. In short, such a data is so large and complex
that none of the traditional data management tools are able to store it or process it
efficiently.

e The processing of Big Data begins with the raw data that isn't aggregated or
organized and is most often impossible to store in the memory of a single
computer.

FXXN Characteristics of Big Data

e Three characteristics of big data are volume, velocity and variety.

1. Volume : Volumes of data are larger than that conventional relational database
infrastructure can cope with. It consisting of terabytes or petabytes of data.

2. Velocity : The term 'velocity' refers to the speed of generation of data. How
fast the data is generated and processed to meet the demands, determines real
potential in the data. It is being created in or near real-time.

3. Variety : It refers to heterogeneous sources and the nature of data, both
structured and unstructured.

e These three dimensions are also called as three V's of Big Data.

Sr. No. Volume Velocity Variety

1. Records Structured Batch

i Pictures Semi-structured Stream

image53.jpeg
3 Videos Unstructured Real time processing

4. Terabyte

Categories of Big Data

e Big data is generally divided in 3 categories : Structured data, Semi-structured

data and Un-structured data

1. Structured data : Any data that can be stored in the form of a particular fixed
format is known as structured data. For example, data stored in the columns
and rows of tables in relational database management systems is a form of
structured data.

2. Semi-structured data : Semi-structured data as the name suggests can have
data which is structured and the same data source can have data which is
unstructured. Data from the different kinds of forms which store data in the
XML or JSON format can be categorized as semi-structured data.

3. Un-structured data : Any data which have no fixed format or the format can't
be known in advance is categorized as unstructured data. In the case of
unstructured data, the size is not the only problem, deriving value or getting
results out of unstructured data is much more complex and challenging as
compared of structured data.

Benefits of Big Data Processing

. @R e

o

6.

Improved customer service
Businesses can utilize outside intelligence while taking decisions
Reducing maintenance costs

Re-develop your products : Big Data can also help you understand how others
perceive your products so that you can adapt them, or your marketing, if need be.

Early identification of risk to the product/services, if any

Better operational efficiency

Examples of Big Data

1

2.

Social media : Social media is one of the biggest contributors to the flood of data
we have today. Facebook generates around 500+ terabytes of data everyday in the
form of content generated by the users like status messages, photos and video
uploads, messages, comments etc.

Stock exchange : Data generated by stock exchanges is also in terabytes per day.
Most of this data is the trade data of users and companies.

image54.jpeg
3. Aviation industry : A single jet engine can generate around 10 terabytes of data

during a 30 minute flight.

4. Survey data : Online or offline surveys conducted on various topics which typically
has hundreds and thousands of responses and needs to be processed for analysis
and visualization by creating a cluster of population and their associated responses.

5. Compliance data :

finance etc has to file compliance reports.

XX Big Data Processing Flow

Many organizations like healthcare, hospitals, life sciences,

e Fig. 5.8.1 shows high level data flow in big data. Data flow consists of four stages

for processing.

1. Gather data (data platform) : Data is received from various sources, collected
and loaded into file system, is called as landing zone. All new forms of raw
data arrive at this platform for storage and processing. The primary point of
the data platform is to deal with low value density data and increase the value

density.

Data from various
source

Landing zone

Ingestion

Gather data

=S
Py

Load data

Extract
data

Transform
Process. b
Discover
" Database Operational Raw data
Analytics integration reporting extracts
Fig. 5.8.1 Big data, deta flow
2. Load data :

In this stage metadata is applied and loaded, and is made ready
for transformation. The loading process can break large data into small chunks

image55.jpeg
of files. This is called as file catalog which is with associated metadata.
Horizontal or vertical partitioning can be done at this stage depending on user
and processing requirements.

3. Transform data : The data is transformed at this stage by applying business
rules and processing of contents. This is complex stage which involves multiple
steps execution. The intermediate results at this stage can be stored and used
for later examination. The results of this stage are key-value pairs and
associated metrics.

4. Extract data : Result data sets are extracted for analytics, operational reporting,
data warehouse integration and visualization purpose.
Two Marks Questions with Answers

Q.1 What is XML ?

Ans. : ¢ XML stands for eXtensible Markup Language. It is emerging as a standard for
exchanging data on the Web. It enables separation of content (XML) and presentation
(XSL).

e XML is a markup language in a standard plain text format. It contains structured
or semi-structured data in verbose user-defined tags presented in a hierarchical
way (tree-like structure)

Q.2 What do you mean XML document ?

Ans. : XML documents are text based. The basic object in XML is the XML document.
XML documents, including XHTML ones, must be well-formed. These document is a
labeled, unranked, ordered tree.

Q.3 Define DOM.

Ans. : Document Object Model (DOM) is an object oriented model for representing
XML document, independently from the programming language.

Q.4 Why XML model is called hierarchical model ?

Ans. : In the tree representation, internal nodes represents complex elements, whereas
leaf nodes represent simple elements. This is why the XML model is called hierarchical
model.

Q.5 What are cloud databases ?

Ans. : Cloud-based databases enable users to store, manage and retrieve their
structured, unstructured and semi-structured data via a cloud platform, accessible over
the Internet. Cloud databases are also known as database as a service (DBaaS), since
they are often offered as a managed service.

image56.jpeg
Q.6 What is Big data ?

Ans. : 'Big data’' is a term used to describe collection of data that is huge in size and
yet growing exponentially with time. In short, such a data is so large and complex that
none of the traditional data management tools are able to store it or process it
efficiently.

Q.7 State the advantages of XML.
Ans. : Advantages :

1. It simplify the data

2. XML Simplifies data transport

3. It simplifies data sharing

4. Documents are easily readable and self-describing
Q8 Describe the role of XML namespace.

Ans. : Namespaces are a simple and straightforward way to distinguish names used in
XML documents, no matter where they come from

Q.9 What is a Document Type Definition (DTD) ?

Ans.: A DTD is a set of rules that describe the structure of XML elements. Software
may need to read these rules before processing and displaying a document. These rules
generally state the name and contents of each element and in which contexts it can and
must exist.

Q.10 What is XPath ?

Ans. : XPath is a set-based query syntax for extracting data from an XML document. Tt
demands a completely different implementation to handle the processing of hierarchical
data.

Q.11 What is XQuery ?

Ans. : XQuery is a language for finding and extracting elements and attributes from
XML documents.

Q.12 Where XQuery is used ?

Ans. : XQuery can be used to :
e Extract information to use in a Web Service
* Generate summary reports
e Transform XML data to XHTML

e Search Web documents for relevant information

image57.jpeg
Q.13 What is FLWOR expression ?

Ans. : The FLWOR expression allows us to query XML and database data much more
efficiently and powerfully than with plain XPath expressions and it forms the
cornerstone of XQuery.

Q.14 What is difference between XPath and XQuery ?

Ans. : Difference to note between XPath and XQuery is that XPath expressions may
return a node set, whereas the same XQuery expression will return a node sequence.

Q.15 What is location path in XPath ?

Ans. : Location path is an expression that specifies how to navigate an XPath tree from
one node to another. Location path is composed of location steps, each of which is
composed of an "axis", a "node test" and an optimal "predicate".

Q.16 What is XPath axes ?

Ans. : Axes are used to identify elements by their relationship like parent, child,
sibling, etc. Axes are named so because they refer to axis on which elements are lying
relative to an element.

Q.17 What is document order of elements ?

Ans. : Order in which opening tags of elements appear in the document is called the
document order of elements.

Q.18 What is an XML Schema ?

Ans. : An XML Schema is a language for expressing constraints about XML documents.
There are several different schema languages in widespread use, but the main ones are
DTDs, Relax-NG, Schematron and W3C XSD.

Q.19 What is XML Schema used for ?
Ans. : A Schema can be used :
e To provide a list of elements and attributes in a vocabulary.
e To associate types, such as integer, string, etc.
e To provide documentation that is both human-readable and machine-processable;
e To give a formal description of one or more documents.
Q.20 Define RDF.

Ans. : The Resource Description Framework (RDF) is a W3C standard for describing
resources on the Web. RDF is a framework for describing Web resources, e.g., title,
author, modification date, content and copyright information of a Web page.

image58.jpeg
Q.21 What is cloud service ?

Ans. : Cloud service is any service made available to users on demand via the Internet
from a cloud computing provider's servers as opposed to being provided from a
company's Own on-premises servers.

e Cloud services are designed to provide easy, scalable access to applications,
resources and services, and are fully managed by a cloud services provider

Q.22 What is public cloud ?

Ans. : Public cloud is built over the Internet and can be accessed by any user who has
paid for the service. Public clouds are owned by service providers and are accessible
through a subscription.

Q.23 What is private clouds ?

Ans. : A private cloud is built within the domain of an intranet owned by a single
organization. Therefore, it is client owned and managed, and its access is limited to the
owning clients and their partners.

Q.24 What is community cloud ?

Ans. : The cloud infrastructure is shared by several organizations and supports a

specific community that has shared concerns (e.g. mission, security requirements,
policy, or compliance considerations). It may be managed by the organizations or a
third party and may exist on-premises or off-premises.

agQa

image1.jpeg
XML Database

e XML database is a data persistence software system used for storing the huge
amount of information in XML format. It provides a secure place to store XML
documents.

e The data stored in the database can be queried using XQuery, serialized, and
exported into a desired format.

¢ XML database are of two types : XML- enabled and Native XML (NXD)

Introduction of XML

e XML stands for eXtensible Markup Language. It is emerging as a standard for
exchanging data on the Web. It enables separation of content (XML) and
presentation (XSL).

e The XML standard was created by W3C to provide an easy to use and
standardized way to store self describing data.

e XML is a markup language in a standard plain text format. It contains structured
or semi-structured data in verbose user-defined tags presented in a hierarchical
way (tree-like structure).

e XML is not a replacement for HTM and traditional databases. XML documents are
used either as a container to store semi-structured data or a media to exchange
data between heterogeneous application.

e XML can be used to provide more information about the structure and meaning of
the data in the web pages rather than just specifying how the web pages are
formatted for display on the screen.

e XML provides the ability to structure, optionally validate and transform data,
allowing it to be used acrorss various applications in a platform independent
manner.

e The term "Extensible” refers to the capability of being extended while the phase
"Markup Language" refers to the set of conventions used for encoding textual
information.

[XF] XML Document

e XML documents have both logical and physical structure. A document is built up
from storage units called entities. They can contain parsed or unparsed data.

